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1. INTRODUCTION

The Used Fuel Disposition Campaign (UFDC) within the Department of Energy’s 
Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been 
tasked with investigating the disposal of the nation’s spent nuclear fuel (SNF) and 
high-level nuclear waste (HLW) for a range of potential waste forms and geologic 
environments.  A fully coupled thermal-hydrologic-chemical-mechanical-biological-
radiological (THCMBR) performance assessment (PA) model would be extremely 
useful in understanding the long-term behavior of a repository.

Depending on the repository design, water may be present in the repository during 
various time periods in the form of either infiltrating ground water or atmospheric 
relative humidity.  Infiltrating ground water is likely to be driven away from the 
emplacement boreholes by the thermal gradient from the waste package to a 
location within the host rock.  However, as the temperature of the waste package 
cools, ground water containing dissolved species (e.g. Na+, Cl-, Mg++, Ca++, SO4--, NO3-, 
NH4+) may return to the boreholes and contact the waste after some time.  The 
elevated temperatures remaining at the waste package surface and EBS components 
will cause the water to evaporate, and therefore concentrate.  Additionally, before 
ground water contacts the waste package, the high relative humidity potentially 
present in a drift or borehole may cause deliquescence of dust on the surface of the 
waste package.  This can lead to the formation of small but significant amounts of 
highly concentrated brines that could potentially impact the integrity of the waste 
package. 

While work is currently underway at other national laboratories within the Fuel 
Cycle Technology program to examine the role of radiolysis on the inside of the 
waste package and the effect on spent uranium fuel (Buck et al 2011), the risk posed 
to surfaces at the interface between the waste package outer surface and the 
engineered barrier from gamma radiolysis of complex brines should also be 
evaluated.  

The materials used in the EBS depend on the geologic medium and the repository 
design.  For example, a reference granite repository has a bentonite buffer in contact 
with the waste package, while a reference clay repository has a steel liner in contact 
with the high-level waste canister, and a deep borehole repository has a steel liner 
between the waste package and the host rock.  In a reference salt repository, the 
waste package will be covered with a layer of crushed salt.  At storage times before 
groundwater infiltration or dust deliquescence, the gamma radiation emitted from 
the waste package may impact the integrity of the EBS materials themselves, and 
this radiation damage of these EBS materials should also be evaluated.

The UFD R&D Roadmap identifies some areas in which radiolysis-related research 
deserves attention, in particular: radiolytic effects of brine solution with various 
types of cations and anions; characterization of temperature effects; accurate 
characterization of the effect of H2O2 caused by major changes in near-field 
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chemistry as a consequence of radiolysis; and THCM issues relating to gas 
generation from radiolysis.  The four key factors in determining the chemical 
species formed from radiolysis are the:

 nature of the radiation
 total dose
 dose rate
 composition of the solution.

With regard to the latter factor, the interaction of radicals from water irradiation 
with other ions in solution, or the irradiation of the ions themselves can result in a 
myriad of radical anions.  These anion radicals may be detrimental to the waste 
package material or EBS component, or they may scavenge harmful water radiolysis 
products, resulting in a more benign environment for the waste package or EBS 
material.  The reactions between all of these atoms, ions and radicals must be 
understood to accurately assess the effect of radiolysis in complex brines on the 
integrity of the waste package material or EBS components.

This milestone report (M41UF033201) documents a literature review of relevant 
publications for gamma radiolysis occurring within a droplet of water on the outside 
of  a  waste  package in  a  repository environment  within the “Repository 
Science/THCM Near-Field” work-package (FTLL11UF0332) of the UFDC.

2. WASTE PACKAGE SURFACE DOSE

The surface dose for 3 example waste packages in 3 storage concepts was calculated 
by Radulescu at ORNL (2011).

Table 2-1 Maximum surface dose rates (rad/hr) with aging time for a HI-STAR 100 
transport/storage cask containing 32PWR
Decay Time (yr) Radial surface Top surface Bottom 

surface

0 315 2.0 250
10 2.75 0.03 9
20 2.22 0.02 2.8
40 1.17 0.08 3

100 0.023 0.001 0.05
200 0.010 0.0006 0.02
300 0.009 0.0005 0.018
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Table 2-2 Surface dose rates (rad/hr) for a 4PWR waste canister in a reference clay repository 
(SKB design)
Decay Time (yr) Radial surface Top surface Bottom surface

0 38,365 5,710 5,340
30 49.5 16.7 18.4
60 21 3.0 2.4

150 2.7 0.2 0.2
300 0.22 0.05 0.06
600 0.11 0.04 0.05

1×103 0.10 0.04 0.04
3×103 0.07 0.026 0.03
1×104 0.04 0.012 0.015

2.5×104 0.02 0.005 0.006
5×104 0.02 0.004 0.005
1×105 0.025 0.005 0.007
5×105 0.017 0.004 0.003

Table 2-3 Surface dose rates (rad/hr) for a 1 assembly SNF waste canister in a reference deep 
borehole repository (SNL design)
Decay Time (yr) Radial surface Top surface Bottom surface

0 1,000,000 209,500 1,125,000
30 4,600 840 5,750
60 1,300 220 1,400

150 170 26 160
300 5.3 0.9 5
600 0.2 0.04 0.2

1×103 0.2 0.04 0.2
3×103 0.17 0.03 0.14
1×104 0.15 0.025 0.13

2.5×104 0.18 0.04 0.17
5×104 0.27 0.06 0.23
1×105 0.37 0.07 0.34
5×105 0.28 0.06 0.27
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3 GAMMA RADIOLYSIS LITERATURE SURVEY

The available literature on radiolysis of chemical solutions can be divided into three 
categories, namely water (most simple system), salt solutions (binary salts in 
water), and complex brines (multiple salt components in water).  Example literature 
describing the first two categories is given in section 3.1.  Examples of radiolysis in 
more complex brines similar to those found in and around geologic repository 
environments are given in Section 3.2, below, in addition to possible effects on EBS 
materials.

3.1 SIMPLE CHEMICAL SYSTEMS

Many studies have been undertaken to understand both the thermodynamic and 
kinetic behavior of species generated from the radiolysis of simple water solutions 
(e.g. Allen 1954, Dainton 1947, Draganic and Draganic 1973, Hamill 1969, Pastina 
and LaVerne 2001).  Water radiolysis is very well understood and is relatively easy 
to model.

Anbar and Neta (1967) compiled a list of specific bimolecular rate constants for the 
reactions of water radiolysis products with a variety of inorganic and organic 
compounds in aqueous solution.  Buxton et al (1988) published a critical review of 
rate constants for reactions between hydrated electrons, hydrogen atoms and 
hydroxyl radicals in aqueous solutions in the presence of inorganic and organic 
compounds.  These two articles are considered to be the most comprehensive 
collection of radiolysis rate constants.

Anbar and Thomas (1964) studied the pulse radiolysis of NaCl solutions and 
identified the product of the reactions to be Cl2- with a rate of production that was 
independent of oxygen concentration, first order in proton concentration from pH 3 
to 0, and first order in chloride ion and hydroxyl radical concentrations.  
Additionally, Anbar, Meyerstein and Neta (1964) studied the radiolysis of aqueous 
halide solutions, namely KI, KF, NaCl, CsCl and NaBr with 7.8 krad/hr gamma 
irradiation in the presence of a nitrous oxide atmosphere.

Halide ion irradiation was examined using pulse radiolysis by Khorana and Hamill 
(1971), including iodide and bromide ions.  LiCl radiolysis was investigated using 
pulse radiolysis by Woods et al (1975) in concentrated solutions up to 14 molar.  
Hadjadj et al (1982) studied the pulse and gamma radiolysis of concentrated LiI 
solutions, building on that of Pucheault et al 1979, confirming that I3- is formed with 
a yield that increases with LiI concentration, and the presence of I2- anion radicals 
occurs early in the process.  These radical anions then recombine to form I- and I3-.

Kelm and Bohnert (2000a) modeled the chemical reactions associated with gamma 
irradiation of NaCl solutions, noting 82 reactions leading to 12 intermediate 
products using the kinetic code MACKSIMA CHEMIST (Carver et al 1979).  LaVerne 
and Tandon (2005) studied the production of H2 and Cl2 during radiolysis of calcium 
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and magnesium chlorides, and LaVerne et al (2009) studied NaBr solutions at 
millimolar concentrations.

Hyder 1965 measured the production of nitrite ions in neutral and alkaline 
solutions of nitrate with 1.8 Mrad/hr gamma irradiation over a millimolar to molar 
concentration range.  In neutral solutions the reduction of NO3- by electrons and H 
atoms was observed.  Additionally, in alkaline solutions the reaction involves O-.   
Cook et al (2001) studied the reducing radicals present in nitrate solutions using 
pulse radiolysism, building on the work of Gratzel et al, with the formation of the 
NO3-- radical and subsequent reaction with water to generate the NO2 radical.  Cook 
notes that the reaction with water involves O-- rather than H+.

Cunningham (1962) examined the free radicals present in gamma irradiated solid 
KNO3 crystals and observed that radicals: NO2--, NO2, NO3--, NO3, NO and O2- were 
formed but were inconsistent with orbital and orientation requirements.

Daniels and Wigg (1967) studied gamma radiolysis in dilute NaNO3 solutions as a 
function of dose, intensity, temperature, concentration, pH and a variety of 
scavengers.  In neutral solutions, seven key reactions were identified, while in 
alkaline solutions six reactions were identified.  It was also found that oxygen reacts 
with NO3--.  Daniels and Wigg (1969) also investigated gamma radiolysis of 
concentrated (2.5 molar) NaNO3 solutions at neutral and alkaline pH, noting that at 
high pH, yields were consistent with dilution solution work performed earlier.  
Katsumura et al (1991) examined the species formed from the irradiation of nitric 
acid, sodium- and lithium nitrates.

Wu et al (2002) examined the temperature dependence of carbonate radicals in 
NaHCO3 and Na2CO3 solutions and identified (CO3)2--- and H(CO3)2-- radicals.  
Carbonate-containing groundwaters were also investigated by Nicolosi (1986).  Kim 
and Hamill investigated the irradiation of halide and sulfate solutions, resulting in 
Cl2- and SO4- radical ions.  LaVerne and Pimblott (1991) list many radiolysis 
scavenger reactions, including those for phosphate reacting with H atoms.

3.2 COMPLEX SOLUTIONS RELEVANT TO GROUND WATER AND NUCLEAR WASTE

Jenks and Walton (1981) studied the gamma radiolysis and subsequent H2 and O2
yields of salt-mine brines and hydrates, including the effect of temperature (30 to 
182oC), NaCl, MgCl2 and NaBr concentrations.  They found that radiolysis increased 
in MgCl2 solutions at higher temperatures and concentrations, and that radiolytic 
decomposition of MgCl2.6H2O occurred in the waters of hydration.

In 1983, Gray presented experimental research on the gamma radiolysis of 
groundwaters found near potential radioactive waste repositories.  The salt brine 
groundwater contained mostly NaCl, but also included SO4--, Ca++, Mg++, K+, Sr++, 
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HCO3-, Br-, Fe+++, Zn++, B(BO3---), Li+ and F- which underwent 5.5 Mrad/hr irradiation.  
The results showed there is synergistic interaction between Cl- and Br-, and between 
Cl- and SO4--, with minor constituents in the brine appearing to not have a significant 
effect on the gas pressure.  No Cl2 gas or its derivatives were found above 10 ppm in 
the samples analyzed.

Jain et al 1985 measured the effect of gamma irradiation on WIPP Brine A pH 
(containing Na+, K+, Mg++, Ca++, Sr++, Cl-, SO4--, I- HCO3-, Br- and BO3---).  In a series of 
tests, the initial solution pH values ranged from 7.4 to 0.3.  After irradiation with 2.4
Mrad/hr, the pH values ranged from 7.1 to 5.3.  The authors note that this 
“buffering” of pH by radiolysis could be a phenomenon beneficial to the prevention 
of waste package localized corrosion.

Bjergbakke et al 1989 examined the radiolytic products of natural waters (fresh 
water granite, sandstone underground, salt brine and sea water) via computer 
simulation using the CHEMSIMUL code (Rasmussen and Bjergbakke 1984).  
Constituent concentrations were typically on the order of millimolar with the 
exception of Na and Cl in salt brine and seawater (which were 0.5 - 5 molar).  The 
authors identified 81 main reactions in the radiolysis of neutral aqueous solutions of 
inorganic ions, and added that organic constituents present in the waters are 
usually oxidized.  This article appears to be one of the most comprehensive lists of 
complex brine radiolysis reaction constants.

Sunder and Christensen (1993) evaluated gamma irradiation of waters relevant to 
the nuclear fuel waste management program using the MACKSIMA CHEMIST model
(Carver et al 1979).  Their work considered only inorganic ions of Na+, CO3-- and Cl-

in water in addition to organic materials such as formate and butanol.  The authors 
list 36 reactions for a H2O solution irradiated with gamma at 280 Gy/hr for 20 
hours, plus an additional 11 reactions for a carbonate-containing solution, 46 
additional species for solutions containing chloride.

Bounoil and Bjergbakke (2008) developed a comprehensive model to describe the 
radiolytic processes in a cement medium using CHEMSIMUL.  The authors found 
that radiolysis was regulated by the inclusion of a calcium peroxide octahydrate 
precipitate between 0.1 and 0.2 Gy/s dose rates.  The very high pH of cement pore 
solution promotes the radiolysis propagation.  

Simonson and Kuhn (1984) predicted the amounts of radiolytically produced 
species in chloride-containing solutions that also contained iron to simulate 
overpack dissolution.  The authors developed the RADIOL reaction kinetics code 
with a dose rate of 3.5 Mrad/hr.  They included 39 reactions, and noted that a 
dynamic equilibrium is established where the concentrations of the minor 
constituents of the brine (Cl, H, HO2-, O2-, HO2 and OH) are dictated by their reactions 
with the major constituents (H+, H2O2, H2 and O2) and by their production rates, and 
that oxidizing species generated via radiolysis can initiate and propagate cathodic 
corrosion at the surface of the waste overpack.
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Hull and Williams (1985) produced a selective annotated bibliography for the 
geochemistry of brine in rock salt and in temperature gradients and gamma 
radiation fields relevant to radioactive waste isolation in salt.  The work is a good 
reference source for geochemical and radiolytic considerations in a salt repository.

Lewis and Reed (1986) studied the effects of gamma irradiation on waste package 
components in groundwaters.  Specifically, the examined low carbon steel (A27) in 
the presence of a GR4 synthetic basaltic groundwater and the addition of methane.  
They noted that a dose of 10 krad/hr for one and two months increased the H2 yield, 
and that increases in the organic carbon yield and sulfate ion concentration, and the 
corrosion rate of the coupons were observed in some of the tests.  Additionally, the 
observed evidence for quenching of the radiolysis yields when basalt was added to 
the reaction vessel.

Glass et al (1986) studied the effects of 3.3 Mrad/hr gamma irradiation on the 
corrosion of austenitic stainless steels in tuffaceous rock pore water (J-13 well 
water).  The authors observed corrosion potential shifts in the positive direction 
associated with the radiolytic induced production of H2O2 and OH radical.  Their 
results also indicated that for 316L stainless steel in chloride media, the pitting 
corrosion potentials are unchanged by gamma irradiation.

Kelm and Bohnert (2000b) examined the effects of gamma irradiation at 100 Gy/hr 
to 1 MGy/hr on NaCl solutions, noting that H2, O2 and ClO3- were present at various 
concentrations depending upon the pH and were dependent on the dose rate.  
Additionally, these authors noted that corrosion products (Ni, Cr, Fe and Mo) were 
observed in solutions of irradiated NaCl in contact with Hastelloy C-276.  

Hua et al (2005) note that there is little information available in the literature on the 
effects of radiation on Alloy 22.  However, Alloy C-4 is compositionally similar to 
Alloy 22 and the former has shown no enhancement of general, pitting or crevice 
corrosion when exposed to 100 rad/hr gamma irradiation in aggressive MgCl2
brines (Shoesmith and King 1998).

4. RADIOLYSIS MODELS

Several radiolysis models are available and have been used in some of the 
publications listed above.  

The MACKSIMA CHEMIST model can only accept one or two elements as inputs, 
with the third element needing to be added as a catalyst.  More information on the 
model can be found in Carver et al (1979).

CHEMSIMUL (Rasmussen and Bjergbakke 1984) is a computer program for 
simulation of chemical kinetics. It can model complex reactions, in particular 
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radiolytic processes with pulse trains, or radiolysis from nuclear waste. It contains 
a translator module and a module for solving the resulting coupled nonlinear 
ordinary differential equations. There is also a module for verifying the mass 
balance. Heterogeneous processes can be simulated by so-called exchange 
equations. These and refreshable parameters are powerful tools for calculating 
many physico-chemical quantities, e.g. the ionic strength. Animated simulations 
with varying reaction rates are possible.  The main computer platform for 
CHEMSIMUL is the Windows PC (XP or later). CHEMSIMUL comes in a modern 
Windows version with a Graphical User Interface (GUI). Also a classic version 
running in command mode (DOS and Linux) is available, using the same input and 
output format as the GUI version. CHEMSIMUL has successfully been tested on 
Linux under Wine from Redhat Enterprise 5 (taken from http://chemsimul.dk/, 
accessed July, 2011).

FACSIMILE (Chance et al 1977) has been used by other researchers involved in UFD 
and FCT work (Buck et al 2011).  The model was originally developed to understand 
the radiolytic processes in gas-cooled nuclear reactors. More information on 
FACSIMILE can be found at http://www.mcpa-software.com/facsimile/index.htm, 
and in Buck et al 2011.

5. CONCLUSIONS AND DISCUSSION

While radiolysis models already exist to examine both the reactions and kinetics 
involved in a number of simple chemical systems (e.g. H2O with Cl), the need for 
more complex solution radiolysis models is evident.  In particular, radiolysis models 
should include all (or as many as possible) of the major ions found in either 
infiltrating water or dust deliquescence on the surface of a waste package.  We 
propose a species database similar that presented in Buck et al 2011 (which 
includes water, carbonate and chloride reactants), but one also augmented to 
include additional reactions and kinetics more complex groundwater chemistries 
(e.g. including nitrate, bromide, iodide and trace inorganic and organic complexes).  
Such inclusions may require additional computational tools that can process more 
complex problems.  However, at this time it does appear that codes such as 
FACIMILE and CHEMSIMUL would be capable of modeling the complex solution 
chemistry reactions and kinetics associated with radiolysis of brines, provided a 
database is adequately populated.
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